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Optimal, Systematic, �-Ary Codes Correcting
All Asymmetric and Symmetric

Errors of Limited Magnitude
Noha Elarief and Bella Bose, Fellow, IEEE

Abstract—Systematic �-ary (� � �) codes capable of correcting
all asymmetric errors of maximum magnitude �, where � � � � �,
are given. These codes are shown to be optimal. Further, simple
encoding/decoding algorithms are described. The proposed code
can be modified to design codes correcting all symmetric errors of
maximum magnitude �, where � �

���

�
.

Index Terms— -ary codes, asymmetric channels, error control,
error correcting codes, limited magnitude error.

I. INTRODUCTION

C LASSICAL error control codes have been designed
under the assumption of binary symmetric errors, i.e.,

both and errors can occur during transmission.
Nevertheless, errors in some VLSI and optical systems are
asymmetric in nature [5], [9]. For example, in VLSI circuits
and memories, charges may leak with time but new charges
will not be added. Thus, a suitable channel model for such
systems is the binary asymmetric channel ( -channel) where
errors are of one dominant type known a priori, say
errors. In [10], Varshamov introduced the -ary asymmetric
channel where the channel’s input/output symbols are over
the alphabet . Moreover, such channel
has the property that, when a symbol is transmitted,
the corresponding received symbol is in the set ,
assuming a decreasing error.

Similar to the asymmetric channel is the unidirectional
channel; the difference is that the type of error is not
known a priori. Detailed studies of asymmetric/unidirec-
tional error control codes can be found in [3] and [8]. Not
until recently has the notion of limited magnitude asym-
metric errors been introduced [2]; we say that a vector

over suffers an asymmetric error
of maximum magnitude/level if and only if the
corresponding channel output is such
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that , with . Fig. 1 illus-
trates the difference between the traditional -ary asymmetric
channel and the -ary asymmetric channel with . In [4], an
interesting application for this special case of -ary asymmetric
channel was pointed out: multilevel flash memories. Unlike
traditional single-level flash memories where each cell stores
only one bit, multilevel flash memories achieve higher storage
capacities and thus lower manufacturing costs by program-
ming the cells into one of threshold voltage thereby
storing bits per cell. Nevertheless, increasing the number
of threshold levels imposes an important challenge [6]: the
voltage difference between states is narrowed since – techni-
cally – the voltage window is limited. A natural consequence is
that reliability issues such as low data retention and read/write
disturbs become more significant [4]; errors in such cases are
typically in one dominant direction and of limited magnitude.

In [1], the authors introduced codes capable of correcting
all asymmetric errors of limited magnitude (or -AEC codes
for short). However, the proposed codes are nonsystematic. A
systematic code, where the information symbols are separated
from the check symbols, is advantageous over a nonsystematic
code because, in a systematic code, the data processing and en-
coding/decoding can be done in parallel. In this paper, we first
give a bound on the number of check digits of a systematic
-AEC code. Then, we present a code that uses the minimum

possible number of check symbols and is thus optimal. Further-
more, properties of the -ary symmetric channel with level are
explored. We show that the code construction ideas used for
-AEC codes can be applied to design codes correcting all sym-

metric errors of maximum level ( -SEC codes).
The rest of the paper is organized as follows. In Section II,

we present a background necessary to tackle the problem. In
Section III, we give a lower bound on the number of check
symbols needed to encode an -AEC code. A code achieving
this bound is proposed in Section IV. We extend the results for
-SEC codes in Section V. Finally, concluding remarks are given

in Section VI.

II. PRELIMINARIES

It turns out that the knowledge of the maximum error level
gives nice properties that can be used in the design of error cor-
recting codes. We start by introducing a well-known distance
metric capturing these properties as mentioned in [1]
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Fig. 1. �-ary asymmetric channel (left) versus �-ary asymmetric channel with level 1 (right).

Definition 1: Let and
be two vectors over , then

the distance between and is defined as

It can easily be seen that .
The following theorem gives the necessary and sufficient con-

ditions on the minimum distance of an -AEC code.

Theorem 1: [1]: A code is an -AEC code if and
only if, for all distinct codewords, , .

Let denote the maximum number of codewords
in a -ary -AEC code of length . A bound on and
a nonsystematic -AEC code achieving this bound are given in
[1]:

Theorem 2: [1]: and ,

.

Theorem 3: [1]: Let be the code of length over defined
as

Then, is an -AEC code with codewords.

Finally, for further analysis, denotes the compo-
nent-wise remainder of a vector when divided by an integer .

III. A LOWER BOUND ON THE NUMBER OF CHECK DIGITS

In the following theorem, we investigate the minimum
number of check digits needed to encode information vectors
of a certain length.

Theorem 4: Let be a systematic -ary -AEC code, such
that the number of information digits in a codeword is . Then,
the number of check digits, , satisfies the following condition:

Proof: Consider the subset of information vectors

Vectors of can be viewed as the set of all vectors of length
over . Hence, , , and .
Therefore, by Theorem 1, the checks assigned to vectors in
must be at least apart for errors to be successfully corrected.
Theorem 1 and Theorem 2 together give a bound on the number
of vectors satisfying such criterion and we get

Taking the on both sides of the above inequality we get the
desired property.

One important implication of the above theorem is that it is
not possible to design a systematic code correcting all errors of
maximum magnitude when , since

goes to infinity in this case. Therefore, for the rest of the paper,
we assume .

IV. AN OPTIMAL SYSTEMATIC -AEC CODE

In this section, codes which require exactly

check digits are presented.

A. Encoding Algorithm

Input: The information vector:
Output: The encoded vector:

1) Compute
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where .
That is, is the number with radix representation
of .

2) Represent in radix with digits:

.
3) Compute the check part:

, where
.

4) Output the encoded vector

Example 1: We encode the word (6, 2, 8, 1) over , as-
suming a maximum error level of 2. The number of check digits
needed is

With notations as above,
and, thus, (0, 1, 2, 1) is the representation of in base 4.

Therefore, the encoded codeword is (6, 2, 8, 1, 0, 3, 6, 3).

Theorem 5: The above construction yields codewords of min-
imum distance .

Proof: Given two distinct information vectors:
and , there are

two possibilities: in
which case each vector is assigned different check digits and,
since the check digits are multiples of , the distance
between the resulting codewords is at least . For the
second case, ,
and are assigned the same check digits. Nevertheless, by
distinctness of and , such that

. Therefore, , and
the resulting codewords satisfy the desired property.

B. Decoding

Input: The channel output:

Output: The recovered codeword:

1) Recover the check symbols by
rounding each received check symbol which is not mul-
tiple of upwards to the nearest multiple of .

2) Compute

.

That is, is the number with radix representation of

:
3) Represent in radix with digits:

.
4) Let . The information sym-

bols are: , such that ,
.

5) Output the codeword:

.

Example 2: Let the encoded word be as in example 4.1 and
the channel output be . Rounding
the check symbols which are not multiple of 3 upwards to
the nearest multiple of 3, we get (0, 3, 6, 3). As in Steps 2
and 3 of the algorithm, we compute , and

. Thus, the correct information symbols are (6,
2, 8, 1).

Theorem 6: Let be a codeword encoded using the algo-
rithm given in Section IV-A, and let be the -asymmetric
channel output. Then, the above decoding algorithm success-
fully recovers .

Proof: Let ,
then, by the channel properties

is such that and . Moreover,
the encoding algorithm yields check symbols that are multiples
of , i.e., lies between two successive multiples of .
Therefore, the first step of the decoding algorithm successfully
recovers the check symbols. It can also be seen that Steps 2 and 3
of the above algorithm do the reverse operations of Steps 1 and
2 of the encoding algorithm. Hence, with notations as above,

.
At Step 4, can be seen as the magnitude of the error at the
information symbol, such that

Thus

Since the maximum error magnitude is (i.e., ) the
value of is successfully computed at Step 4 of the decoding
algorithm, recovering the information symbols.

V. AN OPTIMAL SYSTEMATIC -SEC CODE

In this section, we explore some of the properties of the
limited magnitude symmetric error correcting codes. For a

vector over we say that the
corresponding channel output suf-
fers a symmetric error of maximum magnitude if and only if

, where , .
As shown below, the similarity between the properties of -SEC
codes and -AEC codes allows to extend the code construction
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idea we presented in the previous section to design a family of
-SEC codes.

Theorem 7: A code is capable of correcting all symmetric
errors of maximum magnitude if and only if has minimum
distance .

Proof: Let be the set of all words obtained from a code-
word , where , due to or less symmetric errors
of maximum magnitude , i.e.,

. Then, it is easy to see that, if
has minimum distance , then , .

Therefore, is an -SEC code.
Conversely, if such that , then it

is possible to obtain a word, say , from both and due to
symmetric errors of magnitude or less. Hence, a decoder for
cannot correct . Therefore, the minimum distance should be no
less than for to be capable of correcting all symmetric
errors of maximum magnitude .

The above theorem implies that, when , any -SEC
code can have at most one codeword. Thus, we assume .

Theorem 8: Let denote the maximum number of
words in a -ary -SEC code of length . Then

Proof: Similar to the proof of Theorem 2.

Theorem 9: Let be a code of length over defined as

Then, is an -SEC with codewords.
Proof: Similar to the proof of Theorem 2. Digits of the

channel output can be decoded in this case by rounding down-
wards or upwards (whichever is closer) to the nearest multiple
of .

Theorem 10: Let be a systematic -ary -SEC code, such
that the number of information digits in a codeword is . Then,
the number of check digits, , satisfies the following condition:

Proof: Similar to the proof of Theorem 4.

Now that we have identified the similarities between -SEC
and -AEC codes, it can easily be seen that the proposed en-
coding/decoding algorithms for -AEC codes can be modified
in the following way to construct an -SEC code. In both al-
gorithms, simply replace all computations including the value

with . Moreover, in Step 1 of the decoding algorithm,
the check digits are recovered by rounding the received check
digits either upwards or downwards to the nearest multiple of

, whichever is closer. Finally, at Step 4 of the decoding

TABLE I

algorithm, the information digits are recovered as ,
, where such that

.

VI. CONCLUSION

In this paper, we proposed a family of optimal codes cor-
recting all -ary asymmetric errors of limited magnitude ,where

. These codes are advantageous over other -AEC codes
given in the literature, namely in [1] and [4]. The code construc-
tions given in [4] start with symmetric error correcting codes
over to construct codes that can correct asymmetric er-
rors of maximum magnitude . It is known that no such code
exists when since the minimum distance of any sym-
metric error correcting codes is [7]. Moreover, the codes
given in [4] are not optimal in general which makes the use of
the -AEC codes presented in this paper more favorable as ap-
proaches .

As opposed to the -AEC codes proposed in [1], our code
construction is systematic; information symbols are separable
from the check symbols resulting in faster encoding/decoding
operations. Fortunately, the cost of having systematic code is
low: we show that the rate of our -AEC code is very close to
the one given in [1]. The rate of an error correcting code is
given as where is the number of information digits
and is the length of the code. For the code given in [1], the
rate is

The rate of the proposed code is
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which can be approximated to

Table I illustrates the closeness of the approximate values of
and for and .
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